Product Description
A beam coupling, also known as helical coupling, is a flexible coupling for transmitting torque between 2 shafts while allowing for angular misalignment, parallel offset and even axial motion, of 1 shaft relative to the other. This design utilizes a single piece of material and becomes flexible by removal of material along a spiral path resulting in a curved flexible beam of helical shape. Since it is made from a single piece of material, the Beam Style coupling does not exhibit thebacklash found in some multi-piece couplings. Another advantage of being an all machined coupling is the possibility to incorporate features into the final product while still keep the single piece integrity.
Changes to the lead of the helical beam provide changes to misalignment capabilities as well as other performance characteristics such as torque capacity and torsional stiffness. It is even possible to have multiple starts within the same helix.
The material used to manufacture the beam coupling also affects its performance and suitability for specific applications such as food, medical and aerospace. Materials are typically aluminum alloy and stainless steel, but they can also be made in acetal, maraging steel and titanium. The most common applications are attaching encoders to shafts and motion control for robotics.
Please contact us to learn more.
Type | Description | Bore(mm) |
BR | D18L25 | 4~6.35 |
D20L25 | 4~8 | |
D25L30 | 5~12 | |
D32L40 | 8~16 | |
DR | D12L19 | 3~6 |
D16L24 | 3~6.35 | |
D18L25 | 3~10 | |
D25L30 | 5~14 | |
BE | D16L23 | 3~6 |
D18L25 | 3~6.35 | |
D20L26 | 4~8 | |
D25L31 | 5~12 | |
D32L41 | 6~16 |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Applications of Helical Couplings in Various Industries
Helical couplings find wide use in numerous industries and applications due to their versatility, reliability, and ability to handle misalignment and transmit torque:
- Manufacturing: Helical couplings are used in CNC machines, mills, lathes, and other manufacturing equipment to ensure precise power transmission and minimize vibration.
- Robotics: Robotic arms and joints often employ helical couplings to connect motors and actuators, allowing for flexibility while maintaining accurate motion control.
- Medical Equipment: Imaging devices, surgical robots, and medical equipment often use helical couplings to ensure precise movement and positioning.
- Aerospace: Helical couplings are used in aerospace applications such as satellite systems, UAVs, and aircraft systems where lightweight yet durable coupling solutions are required.
- Automotive: Helical couplings find use in automotive testing equipment, vehicle assembly lines, and robotics for manufacturing and testing automotive components.
- Packaging and Conveyors: Packaging machinery, material handling systems, and conveyors utilize helical couplings to ensure efficient and accurate movement of products.
- Printing: Printers and labeling machines benefit from helical couplings’ ability to handle misalignment and transmit motion accurately.
The broad range of applications highlights the adaptability and reliability of helical couplings across various industries.
Correct Installation and Maintenance of Helical Couplings in Machinery
Proper installation and maintenance are essential for the optimal performance and longevity of helical couplings:
Installation:
- Alignment: Ensure that the shafts to be connected are properly aligned within the specified tolerances. Misalignment can lead to premature wear and reduced coupling life.
- Coupling Insertion: Gently slide the coupling onto the shafts, ensuring that it is fully seated. Avoid forcing the coupling onto the shafts to prevent damage.
- Tightening: Follow the manufacturer’s guidelines for tightening the coupling fasteners. Use the recommended torque values to prevent overtightening or undertightening.
- Lubrication: Apply the appropriate lubricant to any contacting surfaces of the coupling, following the manufacturer’s recommendations.
- Secure Fasteners: Double-check that all fasteners are properly secured. Ensure that any set screws or locking mechanisms are correctly positioned and tightened.
Maintenance:
- Regular Inspection: Periodically inspect the coupling for signs of wear, damage, or misalignment. Address any issues promptly to prevent further problems.
- Lubrication: Maintain proper lubrication as recommended by the manufacturer. Lubrication helps reduce friction, wear, and heat buildup.
- Environmental Conditions: Consider the operating environment of the coupling. If the machinery is exposed to harsh conditions, take measures to protect the coupling from contaminants and corrosive substances.
- Load Changes: If the operating conditions change, such as increased loads or speeds, reevaluate the coupling’s suitability for the application and adjust maintenance intervals accordingly.
- Replacement: Over time, couplings may wear out due to normal usage. If wear is significant or if the coupling shows signs of failure, replace it with a new one to ensure safe and reliable operation.
By following proper installation and maintenance practices, you can maximize the performance and lifespan of helical couplings in your machinery systems.
Specialized Maintenance Routines for Ensuring the Longevity of Helical Couplings
To ensure the longevity of helical couplings, consider implementing specialized maintenance routines:
- Lubrication: Proper lubrication is crucial. Use the recommended lubricant and schedule regular lubrication intervals to prevent friction and wear.
- Cleaning: Regularly clean the coupling to remove dirt, debris, and contaminants that can contribute to wear.
- Inspections: Conduct thorough visual inspections to identify signs of wear, misalignment, or damage. Regular inspections allow you to address issues early.
- Alignment Checks: Periodically check and adjust the alignment of the coupling to prevent premature wear and ensure optimal power transmission.
- Fastener Tightening: Check and tighten fasteners, such as set screws or clamping elements, to prevent loosening during operation.
- Balancing: If the coupling becomes unbalanced, have it balanced to prevent vibrations and reduce wear.
- Temperature Monitoring: Monitor the operating temperature of the coupling area. Abnormal temperature increases can indicate issues.
- Vibration Analysis: Use vibration analysis tools to monitor coupling vibrations and identify any unusual patterns.
- Replacement of Worn Parts: Replace worn or damaged parts promptly with genuine replacement components from the manufacturer.
- Record Keeping: Maintain a detailed maintenance record, including inspection dates, maintenance activities, and any issues identified.
- Training: Train maintenance personnel on proper maintenance procedures and techniques specific to helical couplings.
By following these specialized maintenance routines, you can maximize the longevity and performance of helical couplings in your machinery systems.
editor by CX 2024-02-18